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Introduction. With mobile phone technologies continuing to spread around the world, Call Detail
Records (CDRs) represent an attractive additional data source for inferring internal migration in addition
to traditional data sources such as surveys and administrative records, especially in low and
middle-income countries (LMICs), where traditional statistics can be either unavailable or difficult to
collect. Stay locations are the basis of most mobility statistics derived from location data and CDRs.
Detecting stay location is crucial to migration statistics (Where do people live? When and to where do
they change their residence?), to disaster statistics (Where have people lost their homes? Where are
they displaced to? Did they then return home and when?), and to a multitude of other applications from
informing disease spread to tourism statistics. Though a number of methods were proposed in the
literature to detect stay locations from CDR data, some challenges remain especially in LMICs - where
CDRs tend to be sparser - due to irregularity and low frequency of phone use, network instability, so
called ‘ping-pong’ effect as artefact of mobile communications, and resulting conflation between
changes in phone usage and changes in mobility. We present our solution to detect stay locations (long
and short stays) and relocations from CDRs, which addresses the above issues related to particularly
sparse data in LMICs and can be run on mobile operator infrastructure (constrained in memory and
compute power) to ensure data privacy.

Problem formulation. In this paper, we address two problems of using CDR data for migration and
disaster statistics: 1) robust detection of stay locations and relocations in individual CDR traces and 2)
developing aggregated mobility indicators corrected for biases stemming from changes in phone
usage. Stay location is often assumed to be a location of the last call of the day for an overnight stay
location detection, or the modal location of the last call of the day for longer periods (e.g. detecting
‘home location’). However, such methods of relocation detection between two stay locations lead to ~
79% of false discoveries at the daily level, from experiments we conducted on CDRs traces using a
subset of 781 Digicel subscribers in Haiti for whom we manually labelled stay locations (at
administrative level 3) and relocations. This indicates the need for better performing methods to detect
relocations and stay locations from individual CDR traces. Another source of error arises from
summing the detected stay locations for each region each day or each month to estimate the number
of ‘residents’ of each region (or subscribers who ‘stay’ in each region). However, numbers of residents
and their temporal variations computed as ‘stay location counts’ contain both variations in phone usage
and variations in internal mobility. We quantified the proportion of temporal variation in ‘stay location
counts’ due either to phone usage or to mobility, using CDRs from Digicel Haiti, and found that only
23% of the monthly ‘stay location counts’ variations (on average across regions) in a 24-month study
period are attributable to mobility in this case. This indicates the need to derive resident numbers
directly from observed mobility (relocations).

Method development and validation. We propose a fast and elegant solution to fix such measurement
biases, while ensuring it is operationally feasible: in near real time (updating every day), and on
infrastructure constrained in compute power and memory. To ensure data privacy constraints we
impose for all computations on individual data to be done on a server located at the mobile operator
premises, behind their firewall.
We improved on the common methodology of capturing the modal location of the last call of the day by
using a system of two moving windows: a short window to estimate a daily overnight location and a
longer window (length depending on the type of stay to be detected) within which we check for a
dominant location. For the short window, we tested several methods and concluded the last call of a
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day method is a trade-off between performance and required execution time for operational purposes.
We compared the modal last call of a day, the modal distinct day and the anchor methods for detecting
stay locations within 7-day windows at the fine spatial level of the group of cell towers. The last call of a
day and anchor methods performed similarly for stay location detection, based on our labelled subset.
Recall was better by 5% for the last call of a day, precision and false positive rate was better for anchor
method by 19% and 24% respectively for relocation detection taking location of relocation into
consideration. However, execution time increased by 2.5 times for the anchor method in comparison to
the last call of a day, which was retained as the method to use as ‘first pass’ on the data in the short
window. We use a 7 day rolling window (short window) and assign a daily stay location as a modal
location of the last call of a day as a ‘first pass’ over individual trajectory. In a ‘second pass’ over the
time series, we use a longer window (e.g. 28 days) to search for a dominant location within the
locations returned by the modal last call of day location method. This is particularly relevant when
searching for home location, when the subscriber could be absent from their home. If there is a
dominant location, then a subscriber is assigned this location as their residence location, otherwise the
subscriber is ‘unlocatable’, i.e. avoiding to assign a residence or stay location when a subscriber has
been mainly on the move. This effectively reduces the number of false relocations compared to the
simpler common method, and creates a sample of subscribers who are stable enough and active
enough so that their stay location can be detected. This two windows method also permits an
approximation of stay duration that is robust to missing data and noise. Then a relocation is simply
detected as a change in stay location for each subscriber. We tested the proposed method for detecting
residence location and relocation on a manually labelled subset of subscribers and found that false
discoveries were reduced by 33% for daily relocation detection, from ~79% for a simple modal last call
of a day location method to 53% (our novel method). We are working towards further reduction of false
discoveries in our work of suppressing the ping-pong (or re-routing) artefact of CDR data by weighting
the number of relocations between regions.
Secondly, while this approach creates a more robust detection of stay location at the individual level, the
number of residents (or stays) in a location cannot simply be computed by summing the number of
stay locations detected, as this may mainly be driven by the number subscribers becoming
(un)locatable. To ensure that we only retain variations in the number of residents derived from mobility
(changes in stay locations), we propose to estimate the number of residents directly from the number
of relocations (e.g. change in stay locations between two months). The difference in the number of
residents between two months is equal to the total number of subscribers relocating into the location
minus the number who relocated out of the location. The number of estimated residents is then the
cumulative sum of these differences added to a baseline or starting time as described by
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estimated number of residents in the baseline period or start point. Using this method, large
fluctuations in subscriptions (often observed in urban areas) are suppressed. The method ensures that
the variations of our resident indicator are now derived from observed mobility, at least for short time
periods (changes in the subscriber base will still create a drift over years, which needs to be addressed
by further weighting factors and auxiliary survey data - a problem we are also working on).

Operational use. We have been able to use our stay detection method and resident indicator design on
an operational level, computing resident estimates and internal migration monthly in 3 countries (Haiti,
Ghana and the DRC), and adjusting them for representation biases using survey data. Such data can be
used for service provision planning and for refining other statistics taking population mobility into
account such as disease incidence and prevalence. We also use the method with shorter time windows
to detect disaster-driven displacements and returns and inform disaster management.
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