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All estimates and indicators presented here have been derived from pseudonymised Call Detail 
Records (CDRs), which have been aggregated and anonymised. Explanations of the figures and 
the methodology used to produce them are included to give context. 
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results. 
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Introduction 
 
Hazard risk analysis can include a range of different factors, including: 
 

■ The probability of an area being impacted by a given hazard 
■ The number of people in an area who would be exposed to a given hazard 
■ The vulnerability of an area to a given hazard, which may include dimensions such as: 

■ Socio-economic vulnerability 
■ Presence of vulnerable groups 

■ The capacity for authorities and institutions to respond to a given hazard. 
 

 
Figure 1: The INFORM Risk model balances two major forces: the hazard & exposure dimension on one side, 

and the vulnerability and the lack of coping capacity dimensions on the other side.  
Credit: DRMKC - INFORM 

 
 
The number of people who may be exposed to a hazard is an essential component of risk analysis. 
However, people regularly move between different areas both in terms of short trips (e.g. daily 
travel to work) and longer-term relocations or ‘changes in residence’ (e.g. migrations). This results 
in variations in the number of people in an area over time, both in the short-term (hourly, daily) and 
in the long-term (monthly, seasonal), and therefore how many people may be exposed to a hazard. 
 
High-frequency data on mobility is difficult to obtain using traditional methods, such as surveys 
and censuses, due to the cost and resources associated with continuously collecting new data. In 
comparison, call detail records (CDRs) are routinely collected by mobile network operators for 
billing purposes automatically and in near-real time. As CDR data contain the necessary spatial 
and temporal features to study mobility, these data provide an exciting opportunity to understand 
population distributions and mobility at higher temporal resolution than traditional methods. 
 
The purpose of this work is to derive dynamic indicators of hazard risk by combining static 
geospatial data on hazards and vulnerability, the two other components of the INFORM Risk 
model, with dynamic exposure indicators derived from aggregated and anonymised CDR data.  
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By incorporating the variation over time in the number of people present or residing in different 
areas, we can provide novel insights into how hazards risks vary over time: hourly, daily or 
seasonally. These insights can support improved decision-making for more effective disaster 
preparedness by supporting activities such as contingency planning, pre-positioning resources, 
and simulating disaster scenarios. 
 
In this report, we demonstrate the application of our framework for combining anonymised CDR 
aggregates with static population data and geospatial data on hazards and vulnerability to the 
case study of hourly variation in flooding risk in Ghana. We have an ongoing partnership with 
Ghana Statistical Services (GSS) and Vodafone Ghana to support the use of CDR analytics by the 
Ghanaian government. Within this structure, we are working with GSS and Ghana’s National 
Disaster Management Organization (NADMO), who requested that Flowminder produces dynamic 
indicators of hazard risk, specifically on flooding and drought.  
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Dynamic flooding risk indicators 
 
Using the methodology described below, we produced a range of hazard indicators for flooding in 
Ghana. These include a hazard risk indicator and a percentage change in hazard risk indicator. We 
calculated hourly hazard indicators at district-level for the whole country and at urban division-level 
for Accra, for weekdays, Saturdays, and Sundays. Further intermediary indicators for dynamic 
population density and hazard exposure are included in the Supplementary Information section 
below. 
 
Focussing first on Accra, an area with high flood hazard and vulnerability which also experiences 
large hourly variation in exposure, we can observe substantial temporal variation in flooding risk. In 
Figure 2, we can see increases in flooding risk in the central areas of Accra (highlighted in red) in 
the middle of the weekday, and to a lesser extent in the middle of the day on Saturday. In 
comparison, there is less change in risk on Sundays. 
 

 
Figure 2: Urban division-level flooding risk for Accra at 09:00, 13:00, 18:00 on weekdays, Saturday, and 
Sundays. Central Accra experiences large increases in flooding risk (highlighted in red) during weekdays, 
peaking in the middle of the day. Substantial increases are also experienced on Saturdays. Flooding risk in 
Accra remains more stable on Sundays. 
 
These changes are further highlighted in Figure 3 which shows the percentage change in flooding 
risk (relative to flooding risk at 19:00). Here, we can again see the substantial increase in flooding 
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risk in central Accra on weekdays, and to a lesser extent on Saturdays. We can also see that only 
some areas with large increases in flood risk on weekdays experience similar increases on 
Saturdays. 
 

 
Figure 3: Urban division-level flooding risk for Accra at 09:00, 13:00, 18:00 on weekdays, Saturday, and 
Sundays, expressed as a percentage change relative to 19:00. Central Accra experiences large increases in 
flooding risk during weekdays, peaking in the middle of the day. Substantial increases are also experienced 
on Saturdays. Flooding risk in Accra remains more stable on Sundays. 
 
 
Looking at the country as a whole, we can see the district-level flooding risk map for Ghana at 
different times of day and at different parts of the week. As the spatial variation in flooding risk is 
much larger than the variation in risk over these times scales and the largest changes occur in 
smaller urban districts, the change in risk between different hours is difficult to observe here. 
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Figure 4: District-level flooding risk for the entirety of Ghana at 09:00, 13:00, 18:00 on weekdays, Saturday, 
and Sundays. The high spatial variation in risk and the small size of urban districts which experience the 
greatest changes in risk mean that the differences in risk between different hours and different changes are 
difficult to discern when presented as a map. However, such maps highlight high risk areas for closer 
investigation, such as Accra and Kumasi. 
 
Figures 5 and 6 better demonstrate how our risk indicator varies over the course of a day, and how 
this differs between weekdays, Saturdays and Sundays. Figure 5 shows that, among the districts 
with the highest flooding risk, variation in the number of people present in an area over time can 
cause substantial increases in flooding risk, including in the district with the single greatest 
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flooding risk. Figure 5 also shows that these changes differ depending on the day of the week, with 
very little change in risk between hours on Sundays. 
 

 
Figure 5: Variation in flooding risk over the course of a day in the eight districts with the highest flooding risk, 
on weekdays, Saturdays and Sundays. Some districts experience large changes in flood risk throughout the 
day, while others are more stable. The largest changes in flooding risk occur on weekdays, while there is 
relatively little change in flooding risk on Sundays. 
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Figure 6 further shows that some districts experience very large changes in hazard risk over the 
course of a day. Relative to the risk at 19:00, the district-level flooding risk can increase by as much 
as 100% on weekdays. Figure 6 also demonstrates that the size of these changes varies 
depending on the day of the week, with districts experiencing the greatest changes on weekdays 
and relatively small changes on Sundays. 
 

 
Figure 6: Variation in flooding risk, expressed as a percentage change, over the course of the day in the eight 
districts which experience the greatest changes in flooding risk. The flooding risk in a district can increase by 
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close to 100% in the middle of a weekday. Some districts also experience substantial changes in flooding risk 
on Saturdays. Flooding risk is relatively stable on Sundays in comparison. 

Data sources 
 
The dynamic hazard exposure mapping workflow has four data inputs: 
 

■ Anonymised CDR aggregates 
■ Static population data 
■ Geospatial hazard data 
■ Geospatial vulnerability data 

 
Our methodology for combining these data is described in the next section, and is outlined in 
Figure 7 below. 
 
 

 
Figure 7: Flow diagram outlining how the different types of data are processed and combined to generate 

dynamic hazard exposure data. 
 
 

Anonymised CDR aggregates 
 
Call detail records (CDRs) are a form of data generated by activity on a mobile network, such as 
calls, SMS messages, and mobile data sessions, which mobile network operators routinely collect 
for operational purposes, primarily billing. In combination with location data for cells in the 
network, CDR data provide the three features required to infer mobility: a subscriber identifier 
(which has been pseudonymised), a timestamp (the date and time of a network event), and the 
location of the cell which routed the network event (which is assumed to approximate the location 
of the subscriber). 
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By aggregating the mobility of large numbers of subscribers and applying additional 
anonymisation protocols (such as k-anonymity), patterns of population mobility and changes in 
population distribution can be captured while protecting the individual privacy of mobile phone 
subscribers by preventing the movements of any single subscriber from being discernible. 
 
For this report, CDR aggregates are produced using pseudonymised CDR data provided by 
Vodafone Ghana to calculate specific, approved aggregates such as the number of people present 
in each area each hour. The pseudonymised CDR data is aggregated and anonymised within the 
premises and firewall of the operator, and only the resulting anonymised aggregates are accessed 
for analysis. 
 

Static population data 
 
Static population data, such as population data from censuses or surveys, provide a baseline 
number of people residing in an area. These data are used to scale the CDR-derived indicators to 
produce population-scaled estimates of the number of people visiting or residing in an area over 
time. 
 
For this report, we used the 2020 WorldPop population density estimates for Ghana. 
 

Geospatial hazard data 
 
Geospatial hazard data provide information on which areas may be affected by a hazard, such as 
flooding or drought.  
 
For our use cases, this data is provided by NADMO but could be obtained from other open data 
sources. 
 

 

11 | 21 



 
 

Methodology 
 
In this section, we describe the methodology used to calculate the hourly relative flooding risk in 
Ghana at a district level and in Accra at an urban division level. 
 

Production of subscriber presence aggregates 
 
The subscriber presence aggregate is calculated as the number of unique subscribers recorded in 
a given area in a given period of time. Subscribers are recorded in an area if a network event (e.g. 
phone call, SMS message, mobile data) is routed by a cell tower within that area. 
 
We calculated three subscriber aggregates: hourly, district-level subscriber presence, hourly urban 
division-scale subscriber presence for Accra, and hourly, national-level subscriber presence. For 
this report, we used aggregates derived from CDRs produced by mobile phone calls only between 
May and November 2021. 
 

Calculation of hourly subscriber presence by day type 
 
We subset the presence aggregates grouped into weekdays, Saturdays and Sundays, and 
calculated the median number of active subscribers present in each district during each hour. We 
also calculate the median national-level count of unique active subscribers each hour for each day 
type. 
 
For each day type, we then normalised the median district-level counts of unique active 
subscribers each hour by dividing by the median national-level hourly subscriber presence. This is 
expressed by the equation: 
 

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 
𝑖,𝑡

 = 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
𝑖,𝑡

 · 𝑡𝑜𝑡𝑎𝑙  𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟𝑠
𝑡

 
where i is a given district and t is a given hour. 
 
We used the same methodology to calculate the normalised subscriber presence by day type for 
each urban division in Accra. 
 

Scaling to population size 
 
We scaled our subscriber presence indicator to population-level using the equation: 
 

 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛–𝑠𝑐𝑎𝑙𝑒𝑑 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
𝑖,𝑡 

= 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑖
 ·  (1 +  𝑋 · 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒

𝑖,𝑡
)

 
where X is an adjustment factor to account for the greater mobility of mobile phone users, 
compared to non-mobile phone users. Based on previous mobility analyses conducted for Ghana, 
this was set as 0.5.  
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The static population in each district was calculated using the 2020 WorldPop population density 
estimates for Ghana which gives the estimated population count per square kilometre. To 
estimate the static population per district, each grid cell within a district was summed (Figure 8). 
 

 
Figure 8: Static population district-level density map for Ghana. 

 
For each day type, we calculated the relative change in the normalised hourly, district-level 
subscriber presence, using the normalised subscriber presence at 19:00 as a baseline. This was 
calculated as expressed by the equation: 
 

 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
𝑖,𝑡

 =  
𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒

𝑖, 𝑡
 − 𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒

𝑖,19

𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑟 𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒
𝑖,19

 
We used 19:00 as a baseline for normalised hourly subscriber presence as it is the last hour with a 
high number of national-level active subscribers. 
 
The same process was used to scale the subscriber presence per urban division in Accra to 
population size. 
 

Calculating hourly hazard risk 
 
We used the INFORM initiative framework to calculate hazard risk to combine hourly presence 
with hazard and vulnerability indicators. The hazard and vulnerability inputs were those previously 
used in the National Level Flood and Drought Risk Assessment and Mapping technical report 
produced by NADMO in February 2015. 
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The NADMO flood hazard data was provided as a grid of 100m2 cells. We estimated the 
district-level flood hazard by calculating the mean hazard score for all the cells in a district (Figure 
9). 

 
Figure 9: Flooding hazard maps for Ghana.  Flow diagram outlining how the different types of data are 

processed and combined to generate dynamic hazard exposure data.  
The map on the left shows the hazard data as a grid of 100m2 cells, as it was provided by NADMO. The map 

on the right shows the mean hazard score by district. 
 
The previous flood risk analysis by NADMO calculated vulnerability using land use categories, 
which were assigned scores. We estimated the district-level vulnerability by calculating the mean 
land use score for each district (Figure 10). 
 

 
Figure 10: Land use maps for Ghana, scored by vulnerability to flooding. The map on the left shows the data 

as it was provided by NADMO. The map on the right shows the mean score by district. 
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We converted hourly, district level population size for each day type to population density by 
dividing by the district area (in square kilometres). 
 
We then calculated hourly, district-level flood risk from the mean hazard score of each district, the 
mean vulnerability score, and hourly, district-level population density. This was calculated as 
expressed in the equation: 
 

 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑟𝑖𝑠𝑘
𝑖,𝑡

 = 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 ℎ𝑎𝑧𝑎𝑟𝑑
𝑖
 · 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑖,𝑡
 · 𝑣𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦

𝑖

 
The capacity for authorities and institutions within Ghana to respond to flooding was assumed to 
be consistent across the country, and was therefore not included in the risk calculation. 
 
We also calculated the hourly percentage change in risk, using the risk at 19:00 as a baseline. This 
was calculated as expressed by the equation: 
 

 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑟𝑖𝑠𝑘
𝑖,𝑡

 =  
𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑟𝑖𝑠𝑘

𝑖,𝑡
 − 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑟𝑖𝑠𝑘

𝑖,19

𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑟𝑖𝑠𝑘
𝑖,19

 · 100  

 
 
Some areas of Ghana have no flooding hazard, and therefore a flood risk of 0, resulting in null 
value for percentage change in risk. No districts of Ghana or urban divisions of Accra has a 
vulnerability of 0,  but if areas with no vulnerability were included in the analysis the same would 
apply. 
 
The same process was used to calculate hourly,  urban division-level flood risk for Accra. 
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Next steps 
 
In this section, we outline our ongoing work to further develop our methodology and apply it to 
other types of hazard. 
 
We are consulting with NADMO about the other types of hazard within their portfolio. In addition to 
the flooding use case described above, we have conducted preliminary analyses on exposure to 
drought. Drought, which NADMO has also requested dynamic risk indicators for, is a slower-onset 
hazard and tends to affect larger areas than flooding, and therefore presents an interesting 
alternative case study. Increased temporal resolution on population density and short-term 
mobility may be of interest perhaps less to quantify exposure than to quantify the capacity of the 
area to resist the hazard or in terms of vulnerability. We are exploring a number of approaches to 
calculating exposure from CDR aggregates, including using the number of people residing in an 
area and the maximum hourly presence. We will be exploring these different approaches with 
NADMO to better understand their requirements for a drought risk assessment. 
 
We are also consulting with NADMO to better understand their requirements for risk mapping. This 
includes understanding the spatial resolution NADMO requires for hazard risk mapping. This will 
vary depending on the type of hazard and CDR-derived dynamic hazard exposure maps may not 
be suitable for some types of hazard within NADMO’s portfolio which require very high spatial 
resolution, such as building collapse. However, we can calculate hazard exposure at higher 
resolution for some areas, such as for urban subdivisions in Accra as demonstrated above. 
  
We are currently testing an alternative approach to calculating subscriber presence, derived from 
the number of trips into and out of each district each hour. This alternative approach is similar to 
our recently developed method for calculating the number of residents in an area from the number 
of relocations observed. For estimating the number of resident subscribers, we found that this 
new method is less influenced by variation in mobile phone usage, which also varies substantially 
over the course of a day. 
 
We have also recently developed a novel approach to the population-scaling and bias-adjustment 
of CDR aggregates by combining our long-term residents aggregates with primary and secondary 
survey and census data. We are currently in the process of developing similar methodologies for 
population-scaled and bias-adjusted short-term presence aggregates. We are now implementing 
our population-scaled and bias-adjusted methodology in Ghana. 
 
Lastly, we are also developing methods to incorporate long-term (e.g. seasonal) variation in the 
number of people residing in each district in the framework above. This may have important 
implications for flooding risk in areas which experience large seasonal variation in population due 
to labour migration. 
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Summary 
 
In this report, we demonstrate the application of anonymised CDR aggregates to the production of 
dynamic hazard risk indicators. This can support disaster preparedness by supporting 
decision-makers to understand how mobility affects risk and to take mobility into account during 
the planning process. 
 
From the results presented in this report, we can see that mobility can result in large increases in 
hazard risk depending on the time of day and the day of the week, and that these changes differ 
between areas. Aggregated CDR data is well-suited to capturing changes in mobility and therefore 
the resulting changes in hazard risk. 
 
We are also continuing to refine our methodologies and to work with our partners at GSS and 
NADMO to develop impactful indicators which are delivered in a way that facilitates their use by 
staff at these agencies. 
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Supplementary information 
 

Change in population density 
 
In order to calculate the hourly district-level flooding risk for Ghana, and hourly urban-division risk 
for Accra, we calculated the change in population density relative to the density at 19:00. These 
indicators are displayed on the maps below. 

 
Figure S1: Change in population density of districts in Ghana, expressed as a percentage change relative to a 
19:00 baseline. The largest changes occur in smaller urban districts which are not clearly visible at this scale. 
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Figure S2: Change in population density of urban divisions in Accra, expressed as a percentage change 

relative to a 19:00 baseline. The largest increases in population density occur in central Accra during 
weekdays, and to a lesser extent on Saturdays. A smaller number of urban divisions experience substantial 

increases on Saturdays than weekdays, suggesting activity on Saturdays is focussed in specific areas. 
Population density in Accra is more stable on Sundays. 
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Change in hazard exposure 

 
Figure S3: Change in flooding exposure of districts in Ghana, expressed as a percentage change relative to a 
19:00 baseline. The largest changes occur in smaller urban districts which are not clearly visible at this scale. 
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Figure S4: Change in flooding exposure of urban divisions in Accra, expressed as a percentage change 

relative to a 19:00 baseline. The largest increases in exposure occur in central Accra during weekdays, and to 
a lesser extent on Saturdays. A smaller number of urban divisions experience substantial increases on 

Saturdays than weekdays, suggesting activity on Saturdays is focussed in specific areas. Flooding exposure 
in Accra is more stable on Sundays. 
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